Scalable Dynamic Load Balancing for P2P
Irregular Network Topologies

Muhammad Waseem Akhtar and M-Tahar Kechadi
mwaseem@ieee.org, tahar.kechadi@ucd.ie

School of Computer Science and Informatics
University College Dublin, Belfield, Dublin 4, Ireland

Abstract. In this study we present a two-phase dynamic load balanc-
ing technique for P2P systems. In the first phase, given P2P network is
mapped onto a hierarchical topology based on the tessellation of a 1-D
space. This hierarchy is called TreeP (Tree based P2P architecture). In
the second phase load balancing among the nodes is performed using
PSLB algorithm. We also present an optimized version of our load bal-
ancing technique. This optimization makes the technique highly parallel
and scalable. This technique is simple, efficient and does not introduce
a considerable overhead as shown in the experimental results.

1 Introduction

Peer to peer (P2P) computing describes the current trend towards utilizing di-
verse resources available within a widely distributed network of nodes. A peer
to peer system is formed by a large number of nodes that can join and leave the
system anytime and have equal capabilities without any central control. Sev-
eral P2P architectures have been developed, which include Chord, CAN, Pastry,
Tapestry and P-Grid [5,6,21]. Although P2P systems have become an archi-
tecture of choice for file sharing applications, such systems are equally suitable
for scientific computing, e-commerce and Grid applications [7,22]. In fact peer
to peer systems and Grids share the same focus on harnessing resources across
multiple administrative domains. One of the most crucial aspects of these sys-
tems is the efficient utilization of resources and the distribution of the workload
among the nodes [8-11,20]. Thus load balancing is an important system func-
tion designed to distribute workload among available processors to improve the
throughput and execution time of the distributed algorithms.

In this paper we propose a new dynamic load balancing technique based on
parallel prefix, also known as scan operation. The proposed technique has two
phases. During the first phase the network is mapped to a TreeP. The second
phase deals with the redistribution of the workload among the nodes based
on their processing power and their current load. The proposed technique is
dynamic, non-preemptive, adaptive and fully distributed.

The paper is organized as follows: In the next two sections the mathematical
models of network, nodes and tasks are presented along with the detailed de-
scription of the TreeP structure. In section three, we present our dynamic load

© A. Gelbukh, S. Torres, I. Lépez (Eds.)
Advances in Computing Science and Engineering
Research in Computing Science 19, 2006, pp. 107-120

108 Waseem Akhtar M. and M-Tahar Kechadi

balancing technique. We illustrated our technique by an example. Creation of
TreeP hierarchy is presented in section four. In section five an optimized version
of our load balancing technique is presented. The section six discusses the per-
formance of the technique. In section seven the experimental results are given.
Finally concluding remarks and the future work are given in the section eight.

2 System Model and TreeP Architecture

A P2P system can be represented as a graph Gnm(V, E) of n nodes and m edges.
The set V represents the nodes of the system and E describes the interconnection
links between the nodes. We consider that the following hold in system under
consideration:

— Each node v; is autonomous and is characterized by three attributes: its pro-
cessing speed ; representing the number of work units that can be executed
per unit of time, its load n;, and its neighborhood e;.

— The network’s flow b;;, which is the effective data rate in bits per second on

the link that connect the nodes v; to vj.

Each node v; is equipped with a communication coprocessor that allows the

communication and computation of loads to be carried out simultaneously.

The tasks are independent and can be executed on any node regardless of

their initial placement.

Each task t; is characterized by two parameters, which are the number of

work units (in terms of computations) within the task (4;), which dictates

its computation cost(Ccomp), and the number of packets required to transfer
the task (i), which dictates its communication cost (Cismm)-

The TreeP topology [4], as shown in figure 1(a) consists of several layers
of peers. The topology consists of connections that are actively maintained.
These connections provide the skeleton of the hierarchy. New joining peers are
assigned to the lowest layer, and are promoted to upper layers to fit the needs
of the system. The system promotes the nodes in a distributed manner and
the criteria used for promotion are based on the characteristics of the nodes
such as: CPU, memory, bandwidth, network load, uptime and storage space.
The network is assumed to be spatially distributed. The space is divided into
tessellations and each tessellation is associated with one level of hierarchy. The
ID of a node V;; provides a spatial location in its tessellation. Level Oy contains
all active nodes of the network. The level ©;, where j > 0, consists of the nodes
shat have been selected from the level 8, based on their uptime and their
resource characteristics. These selected nodes assume the role of higher level
nodes, continuing the existing role of level 0. Each node at level k is a parent of
nodes covered by its tessellation at level kK — 1. A parent is also responsible for
promoting a child to its level of the hierarchy.

The TreeP structure is similar to a B*Tree [14]. However unlike BtTree,
the nodes of level &, can also be part of any other level. The higher level nodes
act as a fabric of virtual interconnection network for TreeP topology, and aré

Scalable Dynamic Load Balancing for P2P Irregular Network Topologies 109

Fig. 1. (a) The TreeP Structure (b) Labeling Scheme for TreeP

called virtual nodes. Similarly to fully map the given system to a TreeP topology
virtual links are introduced. These virtual links are considered as active links
with zero bandwidth. Another main difference between TreeP and Bt Tree is
that the nodes within the same level are connected by a bus topology. The
height h of the hierarchy can be calculated in the same way as for a B+ Tree.
The height of a TreeP network having n nodes and a minimum degree t,t > 2,
is given by: h < log,((n 4+ 1)/2). Usually, the height of a tree corresponds to the
average number of children per parent c¢: h = log.((n + 1)/2).

3 Extension of Positional Scan Load Balancing to TreeP

The load balancing technique presented in this paper constitutes an extension
of Positional Scan Load Balancing (PSLB) algorithm [1,2]. The application of
PSLB leads underlying system to a perfect load-balanced state at a very rea-
sonable time. The PSLB algorithm preserves the locality decomposition. It can
be applied at fine grain level to load balance a parallel application as well as at
coarse grain level to schedule heterogeneous tasks.

The Extended PSLB presented in this paper is a two-step strategy. Firstly,
the given P2P system is structured as a TreeP, and then PSLB is deployed. The
PSLB technique is based on parallel prefix operator, or scan (10, 15-17], which
can be defined as follows:

Definition: The prefix-sums (scan) operation takes a binary operator),
and an ordered set of n elements [ag,ay,...,dn-1], and returns the ordered set
(@0, (@ ® ar),...,(ao D a; ... »ap_1)].

The overhead of executing PSLB on a system is directly proportional to the
cost of performing scan operation. Scan operation can be implemented on TreeP
in an efficient manner by exploiting the low height of the topology.

110 Waseem Akhtar M. and M-Tahar Kechadi

Fig. 2. The Scan Operation on TreeP Structure (a) Step I: Up-sweep phase (b) Step
II: Down-sweep phase.

Proposition 1. The time required for a scan operation performed on an n-
node TreeP of height h is of complezity Ologn, that is O(h).

Proof. A scan can be performed on a TreeP in two phases, an up-sweep
phase and a down-sweep phase. During the up-sweep phase, nodes at the level
B, send the operand variable to their respective parent nodes. An intermediate
node, will create a partial sum of the received values, and will pass it on to its
parent node, and eventually this partial sums vector arrive at the root, Fig 2(a).
At the root second phase starts, where this partial sums vector is made a full
scan vector and is sent down to the lower levels. At the end of down-sweep phase,
each node in the system has a complete scan vector, Fig 2(b). So assuming each
communication channel an independent one, the complete scan operation can be
performed in 2 x h, where h is the height of the TreeP.

3.1 TreeP Labeling

A simple yet efficient labeling scheme for TreeP nodes is presented in this section.
This labeling scheme is based on prefix binary concatenated strings and holds
the following properties: 1) a node v can determine its level in the tree, 2) two
nodes v and u can determine their nearest common ancestor and, 3) a node
v can determine its neighbors at the same level. The first two properties of
the proposed labeling scheme are important for a scan operation and the third
property is vital for the optimal routing during the task migration phase.

The proposed labeling scheme, shown in figure 1(b), assigns a label of 0 to the
root. The label of a non root node is its parent’s label (prefix) concatenates the
delimiter and its own label calculated by its parent. Each parent node calculates
the labels for its children, such that, the label of nt* child is a binary string of
length d, where d is the total number of children of the parent node, where n'
bit is inverted to 1. In the prefix labeling schemes [12,13] the string before the
last delimiter is called a prefixlabel, the string after the last delimiter is called 2

Scalable Dynamic Load Balancing for P2P Irregular Network Topologies 111

selflabel, and the string before the fist delimiter, between two neighbor delimiter
or after the last delimiter is called a component.

Observation 1: The mazimum cost for the label storage on an individual
node of a given TreeP structure of mazimum degree d and total number of nodes
n is dlogn.

Observation 2: Node v and node u having the same parent node are neigh-
bors, and are connected at the same level of TreeP topology, if zt* bit is 1 in
one’s selflabel and (z + 1)** or (z — 1)* bit is 1 in other’s selflabel.

Observation 3: Node v and node u having two different parents are neigh-
bors, and are connected at the same level of TreeP topology, if one of them is the
last child of its parent node and the second is the fist child of its parent and the
parents are neighbors, that is, are connected at the same level of TreeP topology.

Observation 4: The nearest common ancestor of two nodes v and n is the
node whose label is present in both node’s label as a first common component.

3.2 PSLB Algorithm
The PSLB algorithm can be summarized in the following five steps.
Algorithm 1: PSLB Algorithm - Brief Description

1. Index the work units.

2. Use scan operator to collect information on the load in the system and on
the processing power.

3. For each node (in parallel): Calculate normalized processing power vector

4. For each node (in parallel): Calculate locally the destination node of each
work unit.

5. For each node (in parallel): Perform the migrations of the work units.

Consider a peer to peer system of total nodes ¢ structured as a TreeP of
height h. Each node v; has a processing power m; and a workload n; expressed
in terms of number of work units. The total work load and processing power of
the system are denoted by W = Y°7_ n; and IT =) 7_ m; respectively.

At the end of the two scan operations each node will know how much load
and power is on its sub-hierarchy and in the system. Each node will then locally
calculate the normalized relative processing power. In a perfect load balanced
system, the load of each node is given by W+;, where v; is the normalized relative
processing power.

The next step is to calculate the destination node for each work unit. Assume
that a work unit u, is currently on node n;. Let node n; be its destination node.
Then, the problem consists of calculating the index of the node nj;. This is
achieved by using the index number of work unit, the total load, and processing
power on the left hand side of the node n;. Each work unit is described in terms
of two different index numbers. A local index number and a global index number.
For example k" work unit on node i can be described as I}, that is work unit

112 Waseem Akhtar M. and M-Tahar Kechadi

number & on node i.

a<i
L= k+Zna (1)

a=1

The algorithm calculates the least index such that A\; < (k+S;)/W. This means
that algorithm uses relative processing power of the nodes and the sum of the
workload of the entire system to calculate the target node for each workload
unit. The description of the algorithm to calculate the destination node is given
in algorithm 2.

Algorithm 2: Destination Node

for all nodes 7 in parallel

for j =1 to n;(load on node)
Find out last processor for which
/\k S (J';fiz
l—j+Si+AxW
Migrate (W[«— W)

end for

end for all

3.3 Example: PSLB on TreeP

Let us illustrate the PSLB technique by an example. Consider a TreeP of height
4 with 14 number of nodes, as presented in figure 1(a). The number of work
units and the processing powers of each node are given in the first two rows of
table 1.

Table 1. Initial load distribution, Processing Power, scan on Load and Processing
Power, Normalized Processing Power and Final Load

vi [va T wy vy | v vei [vs [ve | vr vg vo | vio | vi1 | viz | via
n, 5000 [3500|2000 | 2200 [2500 | 1800 [1400 | 1200 | 1500 | 3800 | 2800 | 1900 | 2400 | 2700
Ty 100 | 200 | 140 120 110 160 180 300 230 240 150 220 280 190
Si 0 5000 | 8500 [10500[12700]15200[17000]18400[19600({21100{24900|27700|29600{32000
A 0 100 | 300 | 440 560 670 830 | 1010 | 1310 | 1540 | 1780 | 1930 | 2150 | 2430

7, ||0.038[0.076]0.053[0.046]0.042]0.0610.067 0.12 [0.088(0.092{0.057[0.084[0.107|0.073
npat|| 1325|2649 | 1854 | 1589 | 1457 | 2119 | 2384 | 3974 | 3046 | 3178 | 1987 | 2914 | 3708 | 2516

Consider the node v;. Its total initial load is 3500. The local index of its
work units are labeled from 1 to 3500. The global index of its work units starts
from 5000 + 1, since the total workload of vg is 5000. By executing the PSLB
algorithm, we first calculate the exclusive scan for the processing power and the
workload. Each node normalizes its processing power values.

Scalable Dynamic Load Balancing for P2P Irregular Network Topologies 113

For instance normalized processing power of node vp is 0.038168, so the
workload that node v should keep is 0.038168 x 34700, that is 1325. Quickly, each
node determines which work unit should be kept and which work unit should
be migrated and where. In addition, the under-loaded nodes know that they are
receivers. In the table 1, node vy has to send 2649 tasks to node ; and 1026
tasks to node v2. Node v; will send 828 work units to node v, and 1589 work
units to node vz and 1083 work units to v4 and eventually will have 2649 work
units. That is the number of work units that node v; should have in a perfectly
balanced system. Table 1 also shows the final distribution of the load among 14
nodes.

Table 2 shows the response time of the system before and after load balancing.
Without load balancing, system will execute the tasks in 100 time units, but after
the load balancing these tasks can be completed in 64 time units.

Table 2. Response Time of the system before and after load balancing

Vi Vo |v1|v2|Vv3|v4|Us|Ue |VT7|VU8 | V9 |V10|V11|V12(|V13
Initial Response Time||100{35{29|37|46|23|16| 8 [14(32|38 |18 18|29
Final Response Time || 64 |44|41|45|50|38|35|31|30(33]41 |32 |27 |28

4 TreeP Topology Creation

This constitutes the first step of EPSLB. The TreeP topology creation is pre-
sented in detail in [4], here we briefly describe it. The creation and maintenance
of a TreeP structure is quite simple. When a node reaches a degree of 2 and does
not have a parent, it will search for a parent by contacting its neighbors. The
election of a parent is triggered when a node reaches a degree of 2. The election
technique used in TreeP is described in [18,19]. When the election is triggered,
each participating node starts a countdown. The initial value of the countdown
is calculated according to the node characteristics (CPU, bandwidth, average
work-load, average network load, etc.). A node that has higher characteristics
will have smaller countdown initial value. When the countdown of a node reaches
0 and if no other node was elected during this time, it will signal to its neighbors
that it is their new parent. Similarly, if a parent has less than two children, it will
start a countdown, but this time, the higher is the characteristic the longer is
the countdown. At the end of the countdown, if it still has less than two children
it will leave its current level and will become an ordinary node of the level 0.
Each peer maintains its routing table by exchanging data through its active
connections. The exchange concerns only the routing table information that
is out-of-date. When two nodes communicate for the first time they exchange
information about their resources and state. Then, each node has to maintain
this information with its direct neighbors. If the connection between two nodes

114 Waseem Akhtar M. and M-Tahar Kechadi

a and b is at level 0 and they have different maximum levels i, and iy, (with
ia < ip), then a will send to b information about its parents at the level i,.

Each active connection at level i, (i > 0), allows the two end points to ex-
change their inner neighbors entry information and also information about theijr
children. They also exchange their routing table entry about their immediate
parent of level i + 1. If the parent entry does not exist it will be added and then
forwarded to its own parent. Such exchange prevents the network from having
two roots of the tree that are not connected. Finally for any two neighbors,
after the initial synchronization and the usual keep-alive message, they only ex-
change information concerning the out of dated data. Sometimes, the update
can be delayed, waiting to be piggybacked during a keep-alive exchange. In the
current implementation the update is exchanged immediately. This technique,
for maintaining the routing tables, provides better connectivity and, therefore
better performance and fault tolerance.

5 Optimized EPSLB on TreeP

An optimized version of EPSLB is presented in this section. This optimization
not only exploits the tessellations and sequential links on the same level of a
TreeP, but also makes the algorithm highly scalable.

Fig.3. A Tessellated TreeP Structure of height 4. Tessellations on the same level,
contained in different parent tessellations, perform load balancing in parallel

A TreeP of height i can be modeled by a set of d, tessellations of height
h — 1, where dp is the degree of parent node shared by all the tessellations in
the set.
TreePh = @b, ,T:_l}

Scalable Dynamic Load Balancing for P2P Irregular Network Topologies 115

Each tessellation can be described as T;7: where z represents the level of the
tessellation and ¥ represents the sequential order of the tessellation in its parent
tessellation. The highest level node in a tessellation is called its root node. Root
nodes of the tessellations on the same level can communicate through sequential
links of TreeP topology. Parent node of the root node of a tessellation is called
the parent node of the tessellation as well. Root nodes of the tessellations at
level £ with the common parent node are contained in the same z + 1 level tes-
sellation. T'wo tessellations on the same level with different parent nodes do not
communicate directly. By using the TreeP labeling scheme presented in section
3.1, each node can easily determine all the above parameters and can spatially
determine its location in a tessellated TreeP.

Similarly each tessellation at level h — 1 in the above set can recursively be
divided into d, tessellations of height h — 2:

R (D2 T Ty

Tt fEhet gha)

At the same level each tessellation in the system can be considered as a single
node participating in the PSLB algorithm, using the workload and processing
power of the entire tessellation.Tessellations of height 1 are the leafs of the TreeP
topology, that is, the nodes of the system.

The optimized EPSLB algorithm starts by an up-sweep phase of prefix oper-
ation, where each node will send its processing power and workload information
to its parent node. Each parent/intermediate node will calculate the partial sum
of these values and will pass on this information to its parent at the next level.
As the down-sweep phase of the prefix operations starts, at each level, the root
node of each tessellation T}7 determines whether it is a sender or a receiver or
both among the tessellations at the same level. A receiver (resp. sender) means
that tessellation is underloaded (resp. over-loaded). If, for instance, a tessella-
tion Ty has to receive additional tasks then its task consists of balancing its own
workload according to the PSLB algorithm and just wait to receive more tasks
which will go to the appropriate nodes. On the other hand, if it is over-loaded,
then it uses PSLB to balance its own workload (only for the tasks that have to
remain in the same tessellation), knowing that the tessellation of higher level will
balance the tasks among themselves and therefore will migrate the extra tasks
to the target tessellations. Each tessellation balances its load with other tessel-
lations on the same level. This procedure guarantees that after its completion
the entire system will be as close as possible to the perfect load balance state.
The EPSLB on TreeP is highly parallel.

6 EPSLB Performance Model

In this section, firstly, a performance model for EPSLB is developed and then
this model is extended to the optimized EPSLB. Let h and ¢ denote the height
and the number of nodes of a TreeP respectively. The number of communication

116 Waseem Akhtar M. and M-Tahar Kechadi

N/

A

© 123 4% €7 88 1201213 WISIIT 181530 21222324 2326 2TI8 230112 IS 36T I 40414243 deasesaT

fS)

Fig.4. A TreeP Structure of height 4 and 48 nodes

steps needed to perform a scan operation on the load and processing power
((+,7v) and (+,n)) is Seomm = 2(2 x h) which is equal to 2 x 2logq. If we
assume that both the load and processing power can be grouped in one message,
then we only need one scan operation. The number of computations performed
by each node is Scomp = 2 % (q — 1).

Let ¥ and ¢ be the costs in time units of a communication and computation
step, respectively, then the total cost of the algorithm can be expressed as follows:

Sq — LS'¢:omc + Scomp = 2(10g ‘1)1/) + 2((1 o l)ﬂo (2)

Equation 2 can be rewritten as:

Sq = Scome + Scomp = 2()Y +2(q — 1)y (3)

In optimized EPSLB load balancing is performed within each tessellation
first and at every next level, each tessellation is considered as a single node par-
ticipating in the load balancing. In optimized EPSLB algorithm, load balancing
among highest level tessellations start only after h +1 = log ¢ + 1 time steps. In
a perfect load balanced system, the load of a tessellation ¢ is W = W«!, where
~* is the normalized relative processing power of tessellation ¢. So the root node
of tessellation ¢ will balance W — Wt = W+t load with other tessellations on
the same level within same parent tessellation. Since tessellations are created
recursively, lower level tessellations perform the load balancing in parallel with
in each parent tessellation making the optimized EPSLB algorithm highly scal-
able. Each sender node has to determine the target node on the workload units
within the same parent tessellation.

Scalable Dynamic Load Balancing for P2P Irregular Network Topologies 117

Using the equation 3, cost of performing EPSLB on a tessellation ¢ of height
1 with ¢* nodes is:

Sq = Scome + Scomp =29+ 2(qt -1y (4)

In optimized EPSLB, each higher level tessellation, can be described as a tes-
sellation of height 1. As TreeP is a balanced tree stucture, we can safely assume
that for all tessellations number of participating nodes ¢ is approximately same.
So the total cost of performing optimized EPSLB on a TreeP is:

i=h-—1
Se=(h+1)¥+ Y {20+2(¢" - 1)} (5)
=1
For a large peer to peer system structured as a TreeP, the number of nodes

in a tessellation ¢t is very small compared to the total number of nodes g, so the
execution time of the optimized EPSLB algorithm is smaller on TreeP nodes.

-~ Initi d - Load after Load Balancin
2600 1 - pm:l,l;:].,, Power 2600 1 - Processing Power “

LYV T ATITY S /i ;\ J }\ LAY,
S U T v

1000 1000
800 800
WW M»W
0 Frrrrerrrrrrrrrerrirer S R S IS {530

l”"' '7 ;0 1’;’1; 19 22 26 ‘:’l”;' 34 37 40‘;3‘4‘
(a) (b)

Fig. 5. (a) Load distribution before load balancing, (b) After load balancing, Load Dis-
tribution Curve perfectly corresponds to the Processing Power Curve. More powerfull
processors have more work

7 Experimental Results

Experimental results presented in this section are based on the following pa-
rameters: the communication cost of each workload unit and the computational
cost of a work load unit. The load is initially distributed among the nodes ran-
domly. Figure 4 shows a TreeP of height 4 with 48 number of nodes. Figure
5(a) represents the processing powers of the individual nodes and the distri-
bution of work units among the system before the load balancing. Figure 5(b)
represents the distribution of work units after load balancing using the EPSLB
algorithm. It can be clearly seen that powerful processors have more work. The

118 Waseem Akhtar M. and M-Tahar Kechadi

work is exactly balanced according to the relative normalized processing power
of individual nodes. Figure 6(a) shows the response time of the individual nodes
without load balancing and after load balancing. The graph clearly shows that
the response time of the system after load balancing is better than the response
time of the system without load balancing.

80 -~ Response Time Before Load Balancing
70 - Response Time After Load Balancing

| '

| aeC e

N 1 N R P
30 4 }

2 \Y Y 1%

0 T TrrrTT Trrr 1 7 6 5 4 3 2 1
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 C
:

(2) (b)

Fig. 6. (a) Decrease in Response Time of the system after load balancing. (b) Effec-
tiveness of PSLB on TreeP is more for the tasks having lower communication cost and
higher computation cost

Next, we present the effectiveness of load balancing, showing when it is ben-
eficial to perform load balancing. Let A be the ratio of initial response time of
the system to the balanced response time: A = %—%ﬂf Also let ¢ be the ra-

tio of computation to communication cost of a workload unit: ¢ = C%'i’—‘- A
value of A more than one reflects that the response time of the system after load
balancing is less than the response time of the system before load balancing,
so the load balancing is eftective. Figure 7 plots the crossover point showing
clearly when it is beneficial to perform EPSLB. To calculate the crossover point,
the EPSLB algorithm was executed on a network system of 48 nodes with an
average workload of 85000 work units. The response time of the system with
and without load balancing was calculated for different computation and com-
munication costs, within a range of {1,2,3,4,5,6,7}. Figure 6(b) presents the
cffectiveness of EPSLB as the values of computation and communication costs
change. The graph clearly shows that as computation cost of the system changes
from 1 to 7, the effectiveness of the system increases. Figure 7 shows that when
the computation to communication ratio ¢ is less than 1.75, the load balancing
is not effective. But when this ratio is higher than 1.75, the EPSLB becomes
very cffective.

Scalable Dynamic Load Balancing for P2P Irregular Network Topologies 119

12 . Crossover Point
1

08

06

04

02 4

0 — —r ———r—r——— — T —r T
0.14 0.20 0.29 0.40 0.50 0.60,0.75 0.83 1.00 120 1.33 1.50 1.75 2.33 3.00 4.00 600
—_—

¢

Fig. 7. Effectiveness of load balancing increases as the ratio of computation to com-
munication cost of workload units increases

8 Conclusion

We proposed a new load balancing technique for peer to peer systems. The
technique is based on PSLB, a pure dynamic load balancing technique. The
execution of any load balancing technique requires some means of maintaining
a global view of the system. The technique achieved this by using the scan
operator. An optimized version of EPSLB is also developed, that makes the
technique highly parallel and scalable. It is shown that the technique is highly
distributed, parallel and efficient. We studied its cost both theoretically and
experimentally.

References

1. M.W. Akhtar and M-T. Kechadi. Dynamic Load Balancing on Irregular Net-
works Embedded in Hyper-Cubes. 16th IASTED Intl. Conference on Parallel and
Distributed Computing and Systems, MIT, Cambridge, MA, USA, November
9 — 11, 2004.

2. M.T Kechadi. David F. Hegarty. Topology Preserving Dynamic Load Balancing for
Parallel Molecular simulations. In Proceedings of Supercomputing 97, 1997.

3. M.W. Akhtar and M-T. Kechadi. Efficient Two-Pass Dynamic Load Balancing
for Computational Clusters. 23rd IASTED Int’l. Conference on Parallel and Dis-
tributed Computing and Neworks, Innusbruck, Austria, February, 15 — 16, 2005.

4. Benoit Hudzia, M-Tahar Kechadi, Adrian Ottewill. TreeP: A tree based P2P net-
work architecture. IEEE International Conference on Cluster Computing,Boston,
Massachusetts, USA, Setptember 27 — 30, 2005.

5. A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems. IFIP/ACM International Con-

120

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

Waseem Akhtar M. and M-Tahar Kechadi

ference on Distributed Systems Platforms (Middleware), November 2001, pp.
329 — 350.

I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for Internet applications. In Proceedings of the
ACM SIGCOMM '01 Conference. August 2001. pp. 149 — 160.

D. Talia, P. Trunflo Towards a synergy between P2P and grids Internet Computing,
IEEE. Vol 7, Issue 4, July-August 2003. pp.96, 94 — 95.

. Ka-Po Chow, Yu-Kwong Kwok. On Load Balancing for Distributed Multi-agent

Computing. IEEE Trans. on parallel and distributed systems, Vol 13, No 8, 2002.
pp 787 — 801

. B. Godfrey, K. Laksminarayanana, S. Surana, R. Karp, I.Stoica. Load Balancing in

Dynamic Structured P2P Systems. In 23rd Conference of the IEEE Communication
Society (INFOCOM), March 2004.

M.W. Akhtar and M-T. Kechadi. Dynamic Load Balancing of Content Requests in
Peer to Peer Systems. 17th IASTED Intl. Conference on Parallel and Distributed
Computing and Systems, Phoenix, AZ, USA, November 14 — 16, 2005.

P. Triantafillou, C. Xiruhaki, M. Koubarakis and N. Ntarmos. Towards High Per-
formance Peer to peer Content and Resource Sharing Systems. In Proceedings of
the Conference on Innovative Data Systems Research. CIDR, January 2003.

S. Kannan, M. Noar and S. Rudich. Implicit representation of graphs. STOC '88:
Proceedings of the twentieth annual ACM symposium on Theory of computing,
Chicago, Illinois, United States 1988, pp. 334 — 343.

C. Li and T.W. Ling. An Improved Prefiz Labeling Scheme: A Binary String Ap-
proach for Dynamic Ordered XML. 10th International Conference on Database
Systems for Advanced Applications, DASFAA 2005, Beijing. Vol 3453/2005 , April
2005, pp. 125 — —137.

D. Comer Ubiquitous B-Tree. ACM Computing Surveys (CSUR)Volume 11, Issue
2, June 1979, pp. 121 — 137.

. Ka-Po Chow, Yu-Kwong Kwok. On Load Balancing for Distributed Multi-agent

Computing. IEEE Trans. on Parallel and Distributed Systems, Volume 13, No 8,
2002. p 787 — 801

M.H. Willebeek-LeMair. A.P. Reeves. Strategies for dynamic load balancing on
highly parallel computers. IEEE Trans. on parallel and distributed systems, Volume
4, No. 9, Sept. 1993.

Kuo-Liang Chung. Prefiz Computations on a Generalized Mesh-Connected Com-
puter with Multiple Buses. IEEE Transactions on Parallel and Distributed Systems.
Volume 6, No 2, February 1995. pp 196 — 199.

J. Beal. Paretless Distributed Hierarchy Formation. Technical Report IA Lab MIT,
2003.

J. Beal. A Robust Amorphous Hierarchy from Persistent Nodes. In Proceedings
of IASTED Conference on Communication Systems and Networks (CSN 2005).
Benalmadena, Spain, September 8 — 10, 2003.

Mark Baker. Cluster Computing White Paper. Technical Paper University of
Portsmouth,UK, December 2000.

K. Aberer. P-Grid: A self-Organizing Access Structure for P2P information Sys-
tems. Lecture Notes in Computer Science 2172, Springer-Verlag, Heidelberg, Ger-
many, 2001. pp. 179 — 194.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting. Volume 11. No. 2. 1997. pp 115 — 128.

